Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axext4 | Unicode version |
Description: A bidirectional version of Extensionality. Although this theorem "looks" like it is just a definition of equality, it requires the Axiom of Extensionality for its proof under our axiomatization. See the comments for ax-ext 2022. (Contributed by NM, 14-Nov-2008.) |
Ref | Expression |
---|---|
axext4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 1601 | . . 3 | |
2 | 1 | alrimiv 1754 | . 2 |
3 | axext3 2023 | . 2 | |
4 | 2, 3 | impbii 117 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 98 wal 1241 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |