Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axext3 | Unicode version |
Description: A generalization of the Axiom of Extensionality in which and need not be distinct. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
axext3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 1601 | . . . . 5 | |
2 | 1 | bibi1d 222 | . . . 4 |
3 | 2 | albidv 1705 | . . 3 |
4 | equequ1 1598 | . . 3 | |
5 | 3, 4 | imbi12d 223 | . 2 |
6 | ax-ext 2022 | . 2 | |
7 | 5, 6 | chvarv 1812 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wal 1241 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 |
This theorem is referenced by: axext4 2024 |
Copyright terms: Public domain | W3C validator |