Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvg Unicode version

Theorem axcaucvg 6974
 Description: Real number completeness axiom. A Cauchy sequence with a modulus of convergence converges. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). Because we are stating this axiom before we have introduced notations for or division, we use for the natural numbers and express a reciprocal in terms of . This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 7004. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.)
Hypotheses
Ref Expression
axcaucvg.n
axcaucvg.f
axcaucvg.cau
Assertion
Ref Expression
axcaucvg
Distinct variable groups:   ,,,   ,,,,   ,,,   ,,   ,,,   ,,   ,   ,
Allowed substitution hints:   (,)   ()   ()

Proof of Theorem axcaucvg
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axcaucvg.n . 2
2 axcaucvg.f . 2
3 axcaucvg.cau . 2
4 breq1 3767 . . . . . . . . . . . . 13
54cbvabv 2161 . . . . . . . . . . . 12
6 breq2 3768 . . . . . . . . . . . . 13
76cbvabv 2161 . . . . . . . . . . . 12
85, 7opeq12i 3554 . . . . . . . . . . 11
98oveq1i 5522 . . . . . . . . . 10
109opeq1i 3552 . . . . . . . . 9
11 eceq1 6141 . . . . . . . . 9
1210, 11ax-mp 7 . . . . . . . 8
1312opeq1i 3552 . . . . . . 7
1413fveq2i 5181 . . . . . 6
1514a1i 9 . . . . 5
16 opeq1 3549 . . . . 5
1715, 16eqeq12d 2054 . . . 4
1817cbvriotav 5479 . . 3
1918mpteq2i 3844 . 2
201, 2, 3, 19axcaucvglemres 6973 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wceq 1243   wcel 1393  cab 2026  wral 2306  wrex 2307  cop 3378  cint 3615   class class class wbr 3764   cmpt 3818  wf 4898  cfv 4902  crio 5467  (class class class)co 5512  c1o 5994  cec 6104  cnpi 6370   ceq 6377   cltq 6383  c1p 6390   cpp 6391   cer 6394  cnr 6395  c0r 6396  cr 6888  cc0 6889  c1 6890   caddc 6892   cltrr 6893   cmul 6894 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-imp 6567  df-iltp 6568  df-enr 6811  df-nr 6812  df-plr 6813  df-mr 6814  df-ltr 6815  df-0r 6816  df-1r 6817  df-m1r 6818  df-c 6895  df-0 6896  df-1 6897  df-r 6899  df-add 6900  df-mul 6901  df-lt 6902 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator