Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax11a2 Unicode version

Theorem ax11a2 1702
 Description: Derive ax-11o 1704 from a hypothesis in the form of ax-11 1397. The hypothesis is even weaker than ax-11 1397, with both distinct from and not occurring in . Thus the hypothesis provides an alternate axiom that can be used in place of ax11o 1703. (Contributed by NM, 2-Feb-2007.)
Hypothesis
Ref Expression
ax11a2.1
Assertion
Ref Expression
ax11a2
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)

Proof of Theorem ax11a2
StepHypRef Expression
1 ax-17 1419 . . 3
2 ax11a2.1 . . 3
31, 2syl5 28 . 2
43ax11v2 1701 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1241 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646 This theorem is referenced by:  ax11o  1703
 Copyright terms: Public domain W3C validator