ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax10oe Structured version   Unicode version

Theorem ax10oe 1675
Description: Quantifier Substitution for existential quantifiers. Analogue to ax10o 1600 but for rather than . (Contributed by Jim Kingdon, 21-Dec-2017.)
Assertion
Ref Expression
ax10oe

Proof of Theorem ax10oe
StepHypRef Expression
1 ax-ia3 101 . . . 4
21alimi 1341 . . 3
3 exim 1487 . . 3
42, 3syl 14 . 2
5 ax11e 1674 . . 3
65sps 1427 . 2
74, 6syld 40 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97  wal 1240   wceq 1242  wex 1378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-11 1394  ax-4 1397  ax-ial 1424
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator