ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax10o Structured version   Unicode version

Theorem ax10o 1600
Description: Show that ax-10o 1601 can be derived from ax-10 1393. An open problem is whether this theorem can be derived from ax-10 1393 and the others when ax-11 1394 is replaced with ax-11o 1701. See theorem ax10 1602 for the rederivation of ax-10 1393 from ax10o 1600.

Normally, ax10o 1600 should be used rather than ax-10o 1601, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.)

Assertion
Ref Expression
ax10o

Proof of Theorem ax10o
StepHypRef Expression
1 ax-10 1393 . 2
2 ax-11 1394 . . . 4
32equcoms 1591 . . 3
43sps 1427 . 2
5 pm2.27 35 . . 3
65al2imi 1344 . 2
71, 4, 6sylsyld 52 1
Colors of variables: wff set class
Syntax hints:   wi 4  wal 1240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-5 1333  ax-gen 1335  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  hbae  1603  dral1  1615
  Copyright terms: Public domain W3C validator