ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax10 Structured version   Unicode version

Theorem ax10 1602
Description: Rederivation of ax-10 1393 from original version ax-10o 1601. See theorem ax10o 1600 for the derivation of ax-10o 1601 from ax-10 1393.

This theorem should not be referenced in any proof. Instead, use ax-10 1393 above so that uses of ax-10 1393 can be more easily identified. (Contributed by NM, 16-May-2008.) (New usage is discouraged.)

Assertion
Ref Expression
ax10

Proof of Theorem ax10
StepHypRef Expression
1 ax-10o 1601 . . 3
21pm2.43i 43 . 2
3 equcomi 1589 . . 3
43alimi 1341 . 2
52, 4syl 14 1
Colors of variables: wff set class
Syntax hints:   wi 4  wal 1240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-5 1333  ax-gen 1335  ax-ie2 1380  ax-8 1392  ax-17 1416  ax-i9 1420  ax-10o 1601
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator