Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax10 Unicode version

Theorem ax10 1605
 Description: Rederivation of ax-10 1396 from original version ax-10o 1604. See theorem ax10o 1603 for the derivation of ax-10o 1604 from ax-10 1396. This theorem should not be referenced in any proof. Instead, use ax-10 1396 above so that uses of ax-10 1396 can be more easily identified. (Contributed by NM, 16-May-2008.) (New usage is discouraged.)
Assertion
Ref Expression
ax10

Proof of Theorem ax10
StepHypRef Expression
1 ax-10o 1604 . . 3
21pm2.43i 43 . 2
3 equcomi 1592 . . 3
43alimi 1344 . 2
52, 4syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1241 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-5 1336  ax-gen 1338  ax-ie2 1383  ax-8 1395  ax-17 1419  ax-i9 1423  ax-10o 1604 This theorem depends on definitions:  df-bi 110 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator