Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  apsym Unicode version

Theorem apsym 7597
 Description: Apartness is symmetric. This theorem for real numbers is part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
Assertion
Ref Expression
apsym # #

Proof of Theorem apsym
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7023 . . 3
3 cnre 7023 . . . . . 6
43ad3antrrr 461 . . . . 5
5 simplrl 487 . . . . . . . . . . . 12
6 simplrl 487 . . . . . . . . . . . . 13
76ad2antrr 457 . . . . . . . . . . . 12
8 reaplt 7579 . . . . . . . . . . . 12 #
95, 7, 8syl2anc 391 . . . . . . . . . . 11 #
10 reaplt 7579 . . . . . . . . . . . . 13 #
117, 5, 10syl2anc 391 . . . . . . . . . . . 12 #
12 orcom 647 . . . . . . . . . . . 12
1311, 12syl6bbr 187 . . . . . . . . . . 11 #
149, 13bitr4d 180 . . . . . . . . . 10 # #
15 simplrr 488 . . . . . . . . . . . 12
16 simplrr 488 . . . . . . . . . . . . 13
1716ad2antrr 457 . . . . . . . . . . . 12
18 reaplt 7579 . . . . . . . . . . . 12 #
1915, 17, 18syl2anc 391 . . . . . . . . . . 11 #
20 reaplt 7579 . . . . . . . . . . . . 13 #
2117, 15, 20syl2anc 391 . . . . . . . . . . . 12 #
22 orcom 647 . . . . . . . . . . . 12
2321, 22syl6bbr 187 . . . . . . . . . . 11 #
2419, 23bitr4d 180 . . . . . . . . . 10 # #
2514, 24orbi12d 707 . . . . . . . . 9 # # # #
26 apreim 7594 . . . . . . . . . 10 # # #
275, 15, 7, 17, 26syl22anc 1136 . . . . . . . . 9 # # #
28 apreim 7594 . . . . . . . . . 10 # # #
297, 17, 5, 15, 28syl22anc 1136 . . . . . . . . 9 # # #
3025, 27, 293bitr4d 209 . . . . . . . 8 # #
31 simpr 103 . . . . . . . . 9
32 simpllr 486 . . . . . . . . 9
3331, 32breq12d 3777 . . . . . . . 8 # #
3432, 31breq12d 3777 . . . . . . . 8 # #
3530, 33, 343bitr4d 209 . . . . . . 7 # #
3635ex 108 . . . . . 6 # #
3736rexlimdvva 2440 . . . . 5 # #
384, 37mpd 13 . . . 4 # #
3938ex 108 . . 3 # #
4039rexlimdvva 2440 . 2 # #
412, 40mpd 13 1 # #
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98   wo 629   wceq 1243   wcel 1393  wrex 2307   class class class wbr 3764  (class class class)co 5512  cc 6887  cr 6888  ci 6891   caddc 6892   cmul 6894   clt 7060   # cap 7572 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-ltxr 7065  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573 This theorem is referenced by:  addext  7601  mulext  7605  ltapii  7624  ltapd  7627  recgt0  7816  prodgt0  7818
 Copyright terms: Public domain W3C validator