ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  annimim Structured version   Unicode version

Theorem annimim 781
Description: Express conjunction in terms of implication. One direction of Theorem *4.61 of [WhiteheadRussell] p. 120. The converse holds for decidable propositions, as can be seen at annimdc 844. (Contributed by Jim Kingdon, 24-Dec-2017.)
Assertion
Ref Expression
annimim

Proof of Theorem annimim
StepHypRef Expression
1 pm2.27 35 . . 3
2 con3 570 . . 3
31, 2syl 14 . 2
43imp 115 1
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-in1 544  ax-in2 545
This theorem is referenced by:  pm4.65r  782  dcim  783  imanim  784  pm4.52im  802  exanaliim  1535
  Copyright terms: Public domain W3C validator