ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anclb Unicode version

Theorem anclb 302
Description: Conjoin antecedent to left of consequent. Theorem *4.7 of [WhiteheadRussell] p. 120. (Contributed by NM, 25-Jul-1999.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
Assertion
Ref Expression
anclb  |-  ( (
ph  ->  ps )  <->  ( ph  ->  ( ph  /\  ps ) ) )

Proof of Theorem anclb
StepHypRef Expression
1 ibar 285 . 2  |-  ( ph  ->  ( ps  <->  ( ph  /\ 
ps ) ) )
21pm5.74i 169 1  |-  ( (
ph  ->  ps )  <->  ( ph  ->  ( ph  /\  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  pm4.71  369  mo3h  1953
  Copyright terms: Public domain W3C validator