Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  aev Unicode version

Theorem aev 1693
 Description: A "distinctor elimination" lemma with no restrictions on variables in the consequent, proved without using ax-16 1695. (Contributed by NM, 8-Nov-2006.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
aev
Distinct variable group:   ,

Proof of Theorem aev
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbae 1606 . 2
2 hbae 1606 . . . 4
3 ax-8 1395 . . . . 5
43spimv 1692 . . . 4
52, 4alrimih 1358 . . 3
6 ax-8 1395 . . . . . . . 8
7 equcomi 1592 . . . . . . . 8
86, 7syl6 29 . . . . . . 7
98spimv 1692 . . . . . 6
109alequcoms 1409 . . . . 5
1110a5i 1435 . . . 4
12 hbae 1606 . . . . 5
13 ax-8 1395 . . . . . 6
1413spimv 1692 . . . . 5
1512, 14alrimih 1358 . . . 4
16 alequcom 1408 . . . 4
1711, 15, 163syl 17 . . 3
18 ax-8 1395 . . . 4
1918spimv 1692 . . 3
205, 17, 193syl 17 . 2
211, 20alrimih 1358 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1241 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427 This theorem depends on definitions:  df-bi 110  df-nf 1350 This theorem is referenced by:  ax16  1694  a16g  1744
 Copyright terms: Public domain W3C validator