ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqpru Unicode version

Theorem addnqpru 6628
Description: Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 5-Dec-2019.)
Assertion
Ref Expression
addnqpru  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  ->  X  e.  ( 2nd `  ( A  +P.  B
) ) ) )

Proof of Theorem addnqpru
Dummy variables  x  y  r  q  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 6573 . . . . . 6  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 addnqprulem 6626 . . . . . 6  |-  ( ( ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  G  e.  ( 2nd `  A ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  e.  ( 2nd `  A
) ) )
31, 2sylanl1 382 . . . . 5  |-  ( ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  e.  ( 2nd `  A
) ) )
43adantlr 446 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  e.  ( 2nd `  A
) ) )
5 prop 6573 . . . . . 6  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
6 addnqprulem 6626 . . . . . 6  |-  ( ( ( <. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  H  e.  ( 2nd `  B ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H )  e.  ( 2nd `  B
) ) )
75, 6sylanl1 382 . . . . 5  |-  ( ( ( B  e.  P.  /\  H  e.  ( 2nd `  B ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H )  e.  ( 2nd `  B
) ) )
87adantll 445 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  -> 
( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H )  e.  ( 2nd `  B
) ) )
94, 8jcad 291 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  -> 
( ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  G )  e.  ( 2nd `  A )  /\  ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  H )  e.  ( 2nd `  B ) ) ) )
10 simpl 102 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) ) )
11 simpl 102 . . . . 5  |-  ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  ->  A  e.  P. )
12 simpl 102 . . . . 5  |-  ( ( B  e.  P.  /\  H  e.  ( 2nd `  B ) )  ->  B  e.  P. )
1311, 12anim12i 321 . . . 4  |-  ( ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B ) ) )  ->  ( A  e. 
P.  /\  B  e.  P. ) )
14 df-iplp 6566 . . . . 5  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  +Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  +Q  s
) ) } >. )
15 addclnq 6473 . . . . 5  |-  ( ( r  e.  Q.  /\  s  e.  Q. )  ->  ( r  +Q  s
)  e.  Q. )
1614, 15genppreclu 6613 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( ( X  .Q  ( *Q
`  ( G  +Q  H ) ) )  .Q  G )  e.  ( 2nd `  A
)  /\  ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  H )  e.  ( 2nd `  B ) )  ->  ( (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  +Q  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  e.  ( 2nd `  ( A  +P.  B
) ) ) )
1710, 13, 163syl 17 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( ( ( X  .Q  ( *Q
`  ( G  +Q  H ) ) )  .Q  G )  e.  ( 2nd `  A
)  /\  ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  H )  e.  ( 2nd `  B ) )  ->  ( (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  G )  +Q  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  e.  ( 2nd `  ( A  +P.  B
) ) ) )
189, 17syld 40 . 2  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  -> 
( ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  G )  +Q  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  e.  ( 2nd `  ( A  +P.  B ) ) ) )
19 simpr 103 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  X  e.  Q. )
20 elprnqu 6580 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  G  e.  ( 2nd `  A ) )  ->  G  e.  Q. )
211, 20sylan 267 . . . . . . . 8  |-  ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  ->  G  e.  Q. )
2221ad2antrr 457 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  G  e.  Q. )
23 elprnqu 6580 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  H  e.  ( 2nd `  B ) )  ->  H  e.  Q. )
245, 23sylan 267 . . . . . . . 8  |-  ( ( B  e.  P.  /\  H  e.  ( 2nd `  B ) )  ->  H  e.  Q. )
2524ad2antlr 458 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  H  e.  Q. )
26 addclnq 6473 . . . . . . 7  |-  ( ( G  e.  Q.  /\  H  e.  Q. )  ->  ( G  +Q  H
)  e.  Q. )
2722, 25, 26syl2anc 391 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( G  +Q  H
)  e.  Q. )
28 recclnq 6490 . . . . . 6  |-  ( ( G  +Q  H )  e.  Q.  ->  ( *Q `  ( G  +Q  H ) )  e. 
Q. )
2927, 28syl 14 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( *Q `  ( G  +Q  H ) )  e.  Q. )
30 mulassnqg 6482 . . . . 5  |-  ( ( X  e.  Q.  /\  ( *Q `  ( G  +Q  H ) )  e.  Q.  /\  ( G  +Q  H )  e. 
Q. )  ->  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  ( G  +Q  H ) )  =  ( X  .Q  (
( *Q `  ( G  +Q  H ) )  .Q  ( G  +Q  H ) ) ) )
3119, 29, 27, 30syl3anc 1135 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  ( G  +Q  H ) )  =  ( X  .Q  ( ( *Q `  ( G  +Q  H
) )  .Q  ( G  +Q  H ) ) ) )
32 mulclnq 6474 . . . . . 6  |-  ( ( X  e.  Q.  /\  ( *Q `  ( G  +Q  H ) )  e.  Q. )  -> 
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  e.  Q. )
3319, 29, 32syl2anc 391 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  e.  Q. )
34 distrnqg 6485 . . . . 5  |-  ( ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  e.  Q.  /\  G  e.  Q.  /\  H  e. 
Q. )  ->  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  ( G  +Q  H ) )  =  ( ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  G )  +Q  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) ) )
3533, 22, 25, 34syl3anc 1135 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  ( G  +Q  H ) )  =  ( ( ( X  .Q  ( *Q
`  ( G  +Q  H ) ) )  .Q  G )  +Q  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) ) )
36 mulcomnqg 6481 . . . . . . . 8  |-  ( ( ( *Q `  ( G  +Q  H ) )  e.  Q.  /\  ( G  +Q  H )  e. 
Q. )  ->  (
( *Q `  ( G  +Q  H ) )  .Q  ( G  +Q  H ) )  =  ( ( G  +Q  H )  .Q  ( *Q `  ( G  +Q  H ) ) ) )
3729, 27, 36syl2anc 391 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( *Q `  ( G  +Q  H
) )  .Q  ( G  +Q  H ) )  =  ( ( G  +Q  H )  .Q  ( *Q `  ( G  +Q  H ) ) ) )
38 recidnq 6491 . . . . . . . 8  |-  ( ( G  +Q  H )  e.  Q.  ->  (
( G  +Q  H
)  .Q  ( *Q
`  ( G  +Q  H ) ) )  =  1Q )
3927, 38syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  .Q  ( *Q `  ( G  +Q  H ) ) )  =  1Q )
4037, 39eqtrd 2072 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( *Q `  ( G  +Q  H
) )  .Q  ( G  +Q  H ) )  =  1Q )
4140oveq2d 5528 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  (
( *Q `  ( G  +Q  H ) )  .Q  ( G  +Q  H ) ) )  =  ( X  .Q  1Q ) )
42 mulidnq 6487 . . . . . 6  |-  ( X  e.  Q.  ->  ( X  .Q  1Q )  =  X )
4342adantl 262 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  1Q )  =  X )
4441, 43eqtrd 2072 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  (
( *Q `  ( G  +Q  H ) )  .Q  ( G  +Q  H ) ) )  =  X )
4531, 35, 443eqtr3d 2080 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( ( X  .Q  ( *Q `  ( G  +Q  H
) ) )  .Q  G )  +Q  (
( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  =  X )
4645eleq1d 2106 . 2  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( ( ( X  .Q  ( *Q
`  ( G  +Q  H ) ) )  .Q  G )  +Q  ( ( X  .Q  ( *Q `  ( G  +Q  H ) ) )  .Q  H ) )  e.  ( 2nd `  ( A  +P.  B
) )  <->  X  e.  ( 2nd `  ( A  +P.  B ) ) ) )
4718, 46sylibd 138 1  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  +Q  H )  <Q  X  ->  X  e.  ( 2nd `  ( A  +P.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   <.cop 3378   class class class wbr 3764   ` cfv 4902  (class class class)co 5512   1stc1st 5765   2ndc2nd 5766   Q.cnq 6378   1Qc1q 6379    +Q cplq 6380    .Q cmq 6381   *Qcrq 6382    <Q cltq 6383   P.cnp 6389    +P. cpp 6391
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-inp 6564  df-iplp 6566
This theorem is referenced by:  addlocprlemeq  6631  addlocprlemgt  6632  addclpr  6635
  Copyright terms: Public domain W3C validator