ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid2d Structured version   Unicode version

Theorem addid2d 6940
Description:  0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
muld.1  CC
Assertion
Ref Expression
addid2d  0  +

Proof of Theorem addid2d
StepHypRef Expression
1 muld.1 . 2  CC
2 addid2 6929 . 2  CC 
0  +
31, 2syl 14 1  0  +
Colors of variables: wff set class
Syntax hints:   wi 4   wceq 1242   wcel 1390  (class class class)co 5455   CCcc 6689   0cc0 6691    + caddc 6694
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424  ax-ext 2019  ax-1cn 6756  ax-icn 6758  ax-addcl 6759  ax-mulcl 6761  ax-addcom 6763  ax-i2m1 6768  ax-0id 6771
This theorem depends on definitions:  df-bi 110  df-cleq 2030  df-clel 2033
This theorem is referenced by:  negeu  6979  ltadd2  7192  subge0  7245  un0addcl  7971  lincmb01cmp  8621  rennim  9191
  Copyright terms: Public domain W3C validator