ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomd Unicode version

Theorem addcomd 7164
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
muld.1  |-  ( ph  ->  A  e.  CC )
addcomd.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
addcomd  |-  ( ph  ->  ( A  +  B
)  =  ( B  +  A ) )

Proof of Theorem addcomd
StepHypRef Expression
1 muld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addcomd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 addcom 7150 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )
41, 2, 3syl2anc 391 1  |-  ( ph  ->  ( A  +  B
)  =  ( B  +  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243    e. wcel 1393  (class class class)co 5512   CCcc 6887    + caddc 6892
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 101  ax-addcom 6984
This theorem is referenced by:  subadd2  7215  pncan  7217  npcan  7220  subcan  7266  ltadd1  7424  leadd2  7426  ltsubadd2  7428  lesubadd2  7430  mulreim  7595  apadd2  7600  recp1lt1  7865  ltaddrp2d  8657  lincmb01cmp  8871  iccf1o  8872  rebtwn2zlemstep  9107  expaddzap  9299  remullem  9471  resqrexlemover  9608  climaddc2  9850  clim2iser2  9858
  Copyright terms: Public domain W3C validator