Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcomd | Unicode version |
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | |
addcomd.2 |
Ref | Expression |
---|---|
addcomd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 | |
2 | addcomd.2 | . 2 | |
3 | addcom 7150 | . 2 | |
4 | 1, 2, 3 | syl2anc 391 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1243 wcel 1393 (class class class)co 5512 cc 6887 caddc 6892 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 101 ax-addcom 6984 |
This theorem is referenced by: subadd2 7215 pncan 7217 npcan 7220 subcan 7266 ltadd1 7424 leadd2 7426 ltsubadd2 7428 lesubadd2 7430 mulreim 7595 apadd2 7600 recp1lt1 7865 ltaddrp2d 8657 lincmb01cmp 8871 iccf1o 8872 rebtwn2zlemstep 9107 expaddzap 9299 remullem 9471 resqrexlemover 9608 climaddc2 9850 clim2iser2 9858 |
Copyright terms: Public domain | W3C validator |