ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcmpblnq Unicode version

Theorem addcmpblnq 6465
Description: Lemma showing compatibility of addition. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
addcmpblnq  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R
) )  ->  <. (
( A  .N  G
)  +N  ( B  .N  F ) ) ,  ( B  .N  G ) >.  ~Q  <. ( ( C  .N  S
)  +N  ( D  .N  R ) ) ,  ( D  .N  S ) >. )
)

Proof of Theorem addcmpblnq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distrpig 6431 . . . . . . . 8  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
x  .N  ( y  +N  z ) )  =  ( ( x  .N  y )  +N  ( x  .N  z
) ) )
21adantl 262 . . . . . . 7  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N.  /\  z  e.  N. ) )  ->  (
x  .N  ( y  +N  z ) )  =  ( ( x  .N  y )  +N  ( x  .N  z
) ) )
3 simplll 485 . . . . . . . 8  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  A  e.  N. )
4 simprlr 490 . . . . . . . 8  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  G  e.  N. )
5 mulclpi 6426 . . . . . . . 8  |-  ( ( A  e.  N.  /\  G  e.  N. )  ->  ( A  .N  G
)  e.  N. )
63, 4, 5syl2anc 391 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( A  .N  G )  e.  N. )
7 simpllr 486 . . . . . . . 8  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  B  e.  N. )
8 simprll 489 . . . . . . . 8  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  F  e.  N. )
9 mulclpi 6426 . . . . . . . 8  |-  ( ( B  e.  N.  /\  F  e.  N. )  ->  ( B  .N  F
)  e.  N. )
107, 8, 9syl2anc 391 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( B  .N  F )  e.  N. )
11 mulclpi 6426 . . . . . . . . 9  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .N  S
)  e.  N. )
1211ad2ant2l 477 . . . . . . . 8  |-  ( ( ( C  e.  N.  /\  D  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. )
)  ->  ( D  .N  S )  e.  N. )
1312ad2ant2l 477 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( D  .N  S )  e.  N. )
14 addclpi 6425 . . . . . . . 8  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  +N  y
)  e.  N. )
1514adantl 262 . . . . . . 7  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N. ) )  ->  (
x  +N  y )  e.  N. )
16 mulcompig 6429 . . . . . . . 8  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  =  ( y  .N  x ) )
1716adantl 262 . . . . . . 7  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N. ) )  ->  (
x  .N  y )  =  ( y  .N  x ) )
182, 6, 10, 13, 15, 17caovdir2d 5677 . . . . . 6  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  G )  +N  ( B  .N  F ) )  .N  ( D  .N  S
) )  =  ( ( ( A  .N  G )  .N  ( D  .N  S ) )  +N  ( ( B  .N  F )  .N  ( D  .N  S
) ) ) )
19 simplrr 488 . . . . . . . 8  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  D  e.  N. )
20 mulasspig 6430 . . . . . . . . 9  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
2120adantl 262 . . . . . . . 8  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N.  /\  z  e.  N. ) )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
22 simprrr 492 . . . . . . . 8  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  S  e.  N. )
23 mulclpi 6426 . . . . . . . . 9  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  e.  N. )
2423adantl 262 . . . . . . . 8  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N. ) )  ->  (
x  .N  y )  e.  N. )
253, 4, 19, 17, 21, 22, 24caov4d 5685 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( A  .N  G )  .N  ( D  .N  S
) )  =  ( ( A  .N  D
)  .N  ( G  .N  S ) ) )
267, 8, 19, 17, 21, 22, 24caov4d 5685 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( B  .N  F )  .N  ( D  .N  S
) )  =  ( ( B  .N  D
)  .N  ( F  .N  S ) ) )
2725, 26oveq12d 5530 . . . . . 6  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  G )  .N  ( D  .N  S ) )  +N  ( ( B  .N  F )  .N  ( D  .N  S ) ) )  =  ( ( ( A  .N  D
)  .N  ( G  .N  S ) )  +N  ( ( B  .N  D )  .N  ( F  .N  S
) ) ) )
2818, 27eqtrd 2072 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  G )  +N  ( B  .N  F ) )  .N  ( D  .N  S
) )  =  ( ( ( A  .N  D )  .N  ( G  .N  S ) )  +N  ( ( B  .N  D )  .N  ( F  .N  S
) ) ) )
29 oveq1 5519 . . . . . 6  |-  ( ( A  .N  D )  =  ( B  .N  C )  ->  (
( A  .N  D
)  .N  ( G  .N  S ) )  =  ( ( B  .N  C )  .N  ( G  .N  S
) ) )
30 oveq2 5520 . . . . . 6  |-  ( ( F  .N  S )  =  ( G  .N  R )  ->  (
( B  .N  D
)  .N  ( F  .N  S ) )  =  ( ( B  .N  D )  .N  ( G  .N  R
) ) )
3129, 30oveqan12d 5531 . . . . 5  |-  ( ( ( A  .N  D
)  =  ( B  .N  C )  /\  ( F  .N  S
)  =  ( G  .N  R ) )  ->  ( ( ( A  .N  D )  .N  ( G  .N  S ) )  +N  ( ( B  .N  D )  .N  ( F  .N  S ) ) )  =  ( ( ( B  .N  C
)  .N  ( G  .N  S ) )  +N  ( ( B  .N  D )  .N  ( G  .N  R
) ) ) )
3228, 31sylan9eq 2092 . . . 4  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( ( A  .N  D )  =  ( B  .N  C
)  /\  ( F  .N  S )  =  ( G  .N  R ) ) )  ->  (
( ( A  .N  G )  +N  ( B  .N  F ) )  .N  ( D  .N  S ) )  =  ( ( ( B  .N  C )  .N  ( G  .N  S
) )  +N  (
( B  .N  D
)  .N  ( G  .N  R ) ) ) )
33 mulclpi 6426 . . . . . . . 8  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .N  G
)  e.  N. )
347, 4, 33syl2anc 391 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( B  .N  G )  e.  N. )
35 simplrl 487 . . . . . . . 8  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  C  e.  N. )
36 mulclpi 6426 . . . . . . . 8  |-  ( ( C  e.  N.  /\  S  e.  N. )  ->  ( C  .N  S
)  e.  N. )
3735, 22, 36syl2anc 391 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( C  .N  S )  e.  N. )
38 simprrl 491 . . . . . . . 8  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  R  e.  N. )
39 mulclpi 6426 . . . . . . . 8  |-  ( ( D  e.  N.  /\  R  e.  N. )  ->  ( D  .N  R
)  e.  N. )
4019, 38, 39syl2anc 391 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( D  .N  R )  e.  N. )
41 distrpig 6431 . . . . . . 7  |-  ( ( ( B  .N  G
)  e.  N.  /\  ( C  .N  S
)  e.  N.  /\  ( D  .N  R
)  e.  N. )  ->  ( ( B  .N  G )  .N  (
( C  .N  S
)  +N  ( D  .N  R ) ) )  =  ( ( ( B  .N  G
)  .N  ( C  .N  S ) )  +N  ( ( B  .N  G )  .N  ( D  .N  R
) ) ) )
4234, 37, 40, 41syl3anc 1135 . . . . . 6  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( B  .N  G )  .N  ( ( C  .N  S )  +N  ( D  .N  R ) ) )  =  ( ( ( B  .N  G
)  .N  ( C  .N  S ) )  +N  ( ( B  .N  G )  .N  ( D  .N  R
) ) ) )
437, 4, 35, 17, 21, 22, 24caov4d 5685 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( B  .N  G )  .N  ( C  .N  S
) )  =  ( ( B  .N  C
)  .N  ( G  .N  S ) ) )
447, 4, 19, 17, 21, 38, 24caov4d 5685 . . . . . . 7  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( B  .N  G )  .N  ( D  .N  R
) )  =  ( ( B  .N  D
)  .N  ( G  .N  R ) ) )
4543, 44oveq12d 5530 . . . . . 6  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( B  .N  G )  .N  ( C  .N  S ) )  +N  ( ( B  .N  G )  .N  ( D  .N  R ) ) )  =  ( ( ( B  .N  C
)  .N  ( G  .N  S ) )  +N  ( ( B  .N  D )  .N  ( G  .N  R
) ) ) )
4642, 45eqtrd 2072 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( B  .N  G )  .N  ( ( C  .N  S )  +N  ( D  .N  R ) ) )  =  ( ( ( B  .N  C
)  .N  ( G  .N  S ) )  +N  ( ( B  .N  D )  .N  ( G  .N  R
) ) ) )
4746adantr 261 . . . 4  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( ( A  .N  D )  =  ( B  .N  C
)  /\  ( F  .N  S )  =  ( G  .N  R ) ) )  ->  (
( B  .N  G
)  .N  ( ( C  .N  S )  +N  ( D  .N  R ) ) )  =  ( ( ( B  .N  C )  .N  ( G  .N  S ) )  +N  ( ( B  .N  D )  .N  ( G  .N  R ) ) ) )
4832, 47eqtr4d 2075 . . 3  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( ( A  .N  D )  =  ( B  .N  C
)  /\  ( F  .N  S )  =  ( G  .N  R ) ) )  ->  (
( ( A  .N  G )  +N  ( B  .N  F ) )  .N  ( D  .N  S ) )  =  ( ( B  .N  G )  .N  (
( C  .N  S
)  +N  ( D  .N  R ) ) ) )
49 addclpi 6425 . . . . . . . . . 10  |-  ( ( ( A  .N  G
)  e.  N.  /\  ( B  .N  F
)  e.  N. )  ->  ( ( A  .N  G )  +N  ( B  .N  F ) )  e.  N. )
505, 9, 49syl2an 273 . . . . . . . . 9  |-  ( ( ( A  e.  N.  /\  G  e.  N. )  /\  ( B  e.  N.  /\  F  e.  N. )
)  ->  ( ( A  .N  G )  +N  ( B  .N  F
) )  e.  N. )
5150an42s 523 . . . . . . . 8  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( F  e.  N.  /\  G  e.  N. )
)  ->  ( ( A  .N  G )  +N  ( B  .N  F
) )  e.  N. )
5233ad2ant2l 477 . . . . . . . 8  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( F  e.  N.  /\  G  e.  N. )
)  ->  ( B  .N  G )  e.  N. )
5351, 52jca 290 . . . . . . 7  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( F  e.  N.  /\  G  e.  N. )
)  ->  ( (
( A  .N  G
)  +N  ( B  .N  F ) )  e.  N.  /\  ( B  .N  G )  e. 
N. ) )
54 addclpi 6425 . . . . . . . . . 10  |-  ( ( ( C  .N  S
)  e.  N.  /\  ( D  .N  R
)  e.  N. )  ->  ( ( C  .N  S )  +N  ( D  .N  R ) )  e.  N. )
5536, 39, 54syl2an 273 . . . . . . . . 9  |-  ( ( ( C  e.  N.  /\  S  e.  N. )  /\  ( D  e.  N.  /\  R  e.  N. )
)  ->  ( ( C  .N  S )  +N  ( D  .N  R
) )  e.  N. )
5655an42s 523 . . . . . . . 8  |-  ( ( ( C  e.  N.  /\  D  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. )
)  ->  ( ( C  .N  S )  +N  ( D  .N  R
) )  e.  N. )
5756, 12jca 290 . . . . . . 7  |-  ( ( ( C  e.  N.  /\  D  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. )
)  ->  ( (
( C  .N  S
)  +N  ( D  .N  R ) )  e.  N.  /\  ( D  .N  S )  e. 
N. ) )
5853, 57anim12i 321 . . . . . 6  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( F  e.  N.  /\  G  e.  N. ) )  /\  ( ( C  e. 
N.  /\  D  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( ( A  .N  G
)  +N  ( B  .N  F ) )  e.  N.  /\  ( B  .N  G )  e. 
N. )  /\  (
( ( C  .N  S )  +N  ( D  .N  R ) )  e.  N.  /\  ( D  .N  S )  e. 
N. ) ) )
5958an4s 522 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( ( A  .N  G
)  +N  ( B  .N  F ) )  e.  N.  /\  ( B  .N  G )  e. 
N. )  /\  (
( ( C  .N  S )  +N  ( D  .N  R ) )  e.  N.  /\  ( D  .N  S )  e. 
N. ) ) )
60 enqbreq 6454 . . . . 5  |-  ( ( ( ( ( A  .N  G )  +N  ( B  .N  F
) )  e.  N.  /\  ( B  .N  G
)  e.  N. )  /\  ( ( ( C  .N  S )  +N  ( D  .N  R
) )  e.  N.  /\  ( D  .N  S
)  e.  N. )
)  ->  ( <. ( ( A  .N  G
)  +N  ( B  .N  F ) ) ,  ( B  .N  G ) >.  ~Q  <. ( ( C  .N  S
)  +N  ( D  .N  R ) ) ,  ( D  .N  S ) >.  <->  ( (
( A  .N  G
)  +N  ( B  .N  F ) )  .N  ( D  .N  S ) )  =  ( ( B  .N  G )  .N  (
( C  .N  S
)  +N  ( D  .N  R ) ) ) ) )
6159, 60syl 14 . . . 4  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( <. (
( A  .N  G
)  +N  ( B  .N  F ) ) ,  ( B  .N  G ) >.  ~Q  <. ( ( C  .N  S
)  +N  ( D  .N  R ) ) ,  ( D  .N  S ) >.  <->  ( (
( A  .N  G
)  +N  ( B  .N  F ) )  .N  ( D  .N  S ) )  =  ( ( B  .N  G )  .N  (
( C  .N  S
)  +N  ( D  .N  R ) ) ) ) )
6261adantr 261 . . 3  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( ( A  .N  D )  =  ( B  .N  C
)  /\  ( F  .N  S )  =  ( G  .N  R ) ) )  ->  ( <. ( ( A  .N  G )  +N  ( B  .N  F ) ) ,  ( B  .N  G ) >.  ~Q  <. ( ( C  .N  S
)  +N  ( D  .N  R ) ) ,  ( D  .N  S ) >.  <->  ( (
( A  .N  G
)  +N  ( B  .N  F ) )  .N  ( D  .N  S ) )  =  ( ( B  .N  G )  .N  (
( C  .N  S
)  +N  ( D  .N  R ) ) ) ) )
6348, 62mpbird 156 . 2  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( ( A  .N  D )  =  ( B  .N  C
)  /\  ( F  .N  S )  =  ( G  .N  R ) ) )  ->  <. (
( A  .N  G
)  +N  ( B  .N  F ) ) ,  ( B  .N  G ) >.  ~Q  <. ( ( C  .N  S
)  +N  ( D  .N  R ) ) ,  ( D  .N  S ) >. )
6463ex 108 1  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R
) )  ->  <. (
( A  .N  G
)  +N  ( B  .N  F ) ) ,  ( B  .N  G ) >.  ~Q  <. ( ( C  .N  S
)  +N  ( D  .N  R ) ) ,  ( D  .N  S ) >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   <.cop 3378   class class class wbr 3764  (class class class)co 5512   N.cnpi 6370    +N cpli 6371    .N cmi 6372    ~Q ceq 6377
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-ni 6402  df-pli 6403  df-mi 6404  df-enq 6445
This theorem is referenced by:  addpipqqs  6468
  Copyright terms: Public domain W3C validator