ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absexp Unicode version

Theorem absexp 9675
Description: Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.)
Assertion
Ref Expression
absexp  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) )

Proof of Theorem absexp
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5520 . . . . . 6  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
21fveq2d 5182 . . . . 5  |-  ( j  =  0  ->  ( abs `  ( A ^
j ) )  =  ( abs `  ( A ^ 0 ) ) )
3 oveq2 5520 . . . . 5  |-  ( j  =  0  ->  (
( abs `  A
) ^ j )  =  ( ( abs `  A ) ^ 0 ) )
42, 3eqeq12d 2054 . . . 4  |-  ( j  =  0  ->  (
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
)  <->  ( abs `  ( A ^ 0 ) )  =  ( ( abs `  A ) ^ 0 ) ) )
54imbi2d 219 . . 3  |-  ( j  =  0  ->  (
( A  e.  CC  ->  ( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )  <->  ( A  e.  CC  ->  ( abs `  ( A ^ 0 ) )  =  ( ( abs `  A
) ^ 0 ) ) ) )
6 oveq2 5520 . . . . . 6  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
76fveq2d 5182 . . . . 5  |-  ( j  =  k  ->  ( abs `  ( A ^
j ) )  =  ( abs `  ( A ^ k ) ) )
8 oveq2 5520 . . . . 5  |-  ( j  =  k  ->  (
( abs `  A
) ^ j )  =  ( ( abs `  A ) ^ k
) )
97, 8eqeq12d 2054 . . . 4  |-  ( j  =  k  ->  (
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
)  <->  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) ) )
109imbi2d 219 . . 3  |-  ( j  =  k  ->  (
( A  e.  CC  ->  ( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )  <->  ( A  e.  CC  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) ) ) )
11 oveq2 5520 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
1211fveq2d 5182 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( abs `  ( A ^
j ) )  =  ( abs `  ( A ^ ( k  +  1 ) ) ) )
13 oveq2 5520 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( abs `  A
) ^ j )  =  ( ( abs `  A ) ^ (
k  +  1 ) ) )
1412, 13eqeq12d 2054 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
)  <->  ( abs `  ( A ^ ( k  +  1 ) ) )  =  ( ( abs `  A ) ^ (
k  +  1 ) ) ) )
1514imbi2d 219 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( A  e.  CC  ->  ( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )  <->  ( A  e.  CC  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) ) ) )
16 oveq2 5520 . . . . . 6  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
1716fveq2d 5182 . . . . 5  |-  ( j  =  N  ->  ( abs `  ( A ^
j ) )  =  ( abs `  ( A ^ N ) ) )
18 oveq2 5520 . . . . 5  |-  ( j  =  N  ->  (
( abs `  A
) ^ j )  =  ( ( abs `  A ) ^ N
) )
1917, 18eqeq12d 2054 . . . 4  |-  ( j  =  N  ->  (
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
)  <->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) ) )
2019imbi2d 219 . . 3  |-  ( j  =  N  ->  (
( A  e.  CC  ->  ( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )  <->  ( A  e.  CC  ->  ( abs `  ( A ^ N
) )  =  ( ( abs `  A
) ^ N ) ) ) )
21 abs1 9670 . . . 4  |-  ( abs `  1 )  =  1
22 exp0 9259 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2322fveq2d 5182 . . . 4  |-  ( A  e.  CC  ->  ( abs `  ( A ^
0 ) )  =  ( abs `  1
) )
24 abscl 9649 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
2524recnd 7054 . . . . 5  |-  ( A  e.  CC  ->  ( abs `  A )  e.  CC )
2625exp0d 9375 . . . 4  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 0 )  =  1 )
2721, 23, 263eqtr4a 2098 . . 3  |-  ( A  e.  CC  ->  ( abs `  ( A ^
0 ) )  =  ( ( abs `  A
) ^ 0 ) )
28 oveq1 5519 . . . . . . . 8  |-  ( ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
)  ->  ( ( abs `  ( A ^
k ) )  x.  ( abs `  A
) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
2928adantl 262 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  (
( abs `  ( A ^ k ) )  x.  ( abs `  A
) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
30 expp1 9262 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
3130fveq2d 5182 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ ( k  +  1 ) ) )  =  ( abs `  (
( A ^ k
)  x.  A ) ) )
32 expcl 9273 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
33 simpl 102 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  ->  A  e.  CC )
34 absmul 9667 . . . . . . . . . 10  |-  ( ( ( A ^ k
)  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
( A ^ k
)  x.  A ) )  =  ( ( abs `  ( A ^ k ) )  x.  ( abs `  A
) ) )
3532, 33, 34syl2anc 391 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
( A ^ k
)  x.  A ) )  =  ( ( abs `  ( A ^ k ) )  x.  ( abs `  A
) ) )
3631, 35eqtrd 2072 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ ( k  +  1 ) ) )  =  ( ( abs `  ( A ^ k
) )  x.  ( abs `  A ) ) )
3736adantr 261 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  ( abs `  ( A ^
( k  +  1 ) ) )  =  ( ( abs `  ( A ^ k ) )  x.  ( abs `  A
) ) )
38 expp1 9262 . . . . . . . . 9  |-  ( ( ( abs `  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( abs `  A
) ^ ( k  +  1 ) )  =  ( ( ( abs `  A ) ^ k )  x.  ( abs `  A
) ) )
3925, 38sylan 267 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( abs `  A
) ^ ( k  +  1 ) )  =  ( ( ( abs `  A ) ^ k )  x.  ( abs `  A
) ) )
4039adantr 261 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  (
( abs `  A
) ^ ( k  +  1 ) )  =  ( ( ( abs `  A ) ^ k )  x.  ( abs `  A
) ) )
4129, 37, 403eqtr4d 2082 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  ( abs `  ( A ^
( k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) )
4241exp31 346 . . . . 5  |-  ( A  e.  CC  ->  (
k  e.  NN0  ->  ( ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) ) ) )
4342com12 27 . . . 4  |-  ( k  e.  NN0  ->  ( A  e.  CC  ->  (
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) ) ) )
4443a2d 23 . . 3  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  ->  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  ( A  e.  CC  ->  ( abs `  ( A ^ ( k  +  1 ) ) )  =  ( ( abs `  A ) ^ (
k  +  1 ) ) ) ) )
455, 10, 15, 20, 27, 44nn0ind 8352 . 2  |-  ( N  e.  NN0  ->  ( A  e.  CC  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A
) ^ N ) ) )
4645impcom 116 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   ` cfv 4902  (class class class)co 5512   CCcc 6887   0cc0 6889   1c1 6890    + caddc 6892    x. cmul 6894   NN0cn0 8181   ^cexp 9254   abscabs 9595
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002  ax-arch 7003  ax-caucvg 7004
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-3 7974  df-4 7975  df-n0 8182  df-z 8246  df-uz 8474  df-rp 8584  df-iseq 9212  df-iexp 9255  df-cj 9442  df-re 9443  df-im 9444  df-rsqrt 9596  df-abs 9597
This theorem is referenced by:  absexpzap  9676  abssq  9677  sqabs  9678  absexpd  9788
  Copyright terms: Public domain W3C validator