![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8nn0 | Unicode version |
Description: 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
8nn0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 8083 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | nnnn0i 8189 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-cnex 6975 ax-resscn 6976 ax-1re 6978 ax-addrcl 6981 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-br 3765 df-iota 4867 df-fv 4910 df-ov 5515 df-inn 7915 df-2 7973 df-3 7974 df-4 7975 df-5 7976 df-6 7977 df-7 7978 df-8 7979 df-n0 8182 |
This theorem is referenced by: 8p3e11 8423 8p4e12 8424 8p5e13 8425 8p6e14 8426 8p7e15 8427 8p8e16 8428 9p9e18 8436 6t4e24 8446 7t5e35 8452 8t3e24 8456 8t4e32 8457 8t5e40 8458 8t6e48 8459 8t7e56 8460 8t8e64 8461 9t3e27 8463 9t9e81 8469 |
Copyright terms: Public domain | W3C validator |