ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3bitr3rd Structured version   Unicode version

Theorem 3bitr3rd 208
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitr3d.1
3bitr3d.2
3bitr3d.3
Assertion
Ref Expression
3bitr3rd

Proof of Theorem 3bitr3rd
StepHypRef Expression
1 3bitr3d.3 . 2
2 3bitr3d.1 . . 3
3 3bitr3d.2 . . 3
42, 3bitr3d 179 . 2
51, 4bitr3d 179 1
Colors of variables: wff set class
Syntax hints:   wi 4   wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  funconstss  5228  eqneg  7470
  Copyright terms: Public domain W3C validator