ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r2 Unicode version

Theorem 3adant3r2 1114
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.)
Hypothesis
Ref Expression
3exp.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3adant3r2  |-  ( (
ph  /\  ( ps  /\ 
ta  /\  ch )
)  ->  th )

Proof of Theorem 3adant3r2
StepHypRef Expression
1 3exp.1 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213expb 1105 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
323adantr2 1064 1  |-  ( (
ph  /\  ( ps  /\ 
ta  /\  ch )
)  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110  df-3an 887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator