ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ralbii Structured version   Unicode version

Theorem 2ralbii 2326
Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
Hypothesis
Ref Expression
ralbii.1
Assertion
Ref Expression
2ralbii

Proof of Theorem 2ralbii
StepHypRef Expression
1 ralbii.1 . . 3
21ralbii 2324 . 2
32ralbii 2324 1
Colors of variables: wff set class
Syntax hints:   wb 98  wral 2300
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-4 1397  ax-17 1416
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-ral 2305
This theorem is referenced by:  ordsoexmid  4240  cnvsom  4804  fununi  4910  tpossym  5832
  Copyright terms: Public domain W3C validator