ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2iunin Unicode version

Theorem 2iunin 3723
Description: Rearrange indexed unions over intersection. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
2iunin  |-  U_ x  e.  A  U_ y  e.  B  ( C  i^i  D )  =  ( U_ x  e.  A  C  i^i  U_ y  e.  B  D )
Distinct variable groups:    x, B    y, C    x, D    x, y
Allowed substitution hints:    A( x, y)    B( y)    C( x)    D( y)

Proof of Theorem 2iunin
StepHypRef Expression
1 iunin2 3720 . . . 4  |-  U_ y  e.  B  ( C  i^i  D )  =  ( C  i^i  U_ y  e.  B  D )
21a1i 9 . . 3  |-  ( x  e.  A  ->  U_ y  e.  B  ( C  i^i  D )  =  ( C  i^i  U_ y  e.  B  D )
)
32iuneq2i 3675 . 2  |-  U_ x  e.  A  U_ y  e.  B  ( C  i^i  D )  =  U_ x  e.  A  ( C  i^i  U_ y  e.  B  D )
4 iunin1 3721 . 2  |-  U_ x  e.  A  ( C  i^i  U_ y  e.  B  D )  =  (
U_ x  e.  A  C  i^i  U_ y  e.  B  D )
53, 4eqtri 2060 1  |-  U_ x  e.  A  U_ y  e.  B  ( C  i^i  D )  =  ( U_ x  e.  A  C  i^i  U_ y  e.  B  D )
Colors of variables: wff set class
Syntax hints:    = wceq 1243    e. wcel 1393    i^i cin 2916   U_ciun 3657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-in 2924  df-ss 2931  df-iun 3659
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator