ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eu2ex Unicode version

Theorem 2eu2ex 1989
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eu2ex  |-  ( E! x E! y ph  ->  E. x E. y ph )

Proof of Theorem 2eu2ex
StepHypRef Expression
1 euex 1930 . 2  |-  ( E! x E! y ph  ->  E. x E! y
ph )
2 euex 1930 . . 3  |-  ( E! y ph  ->  E. y ph )
32eximi 1491 . 2  |-  ( E. x E! y ph  ->  E. x E. y ph )
41, 3syl 14 1  |-  ( E! x E! y ph  ->  E. x E. y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1381   E!weu 1900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-eu 1903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator