ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ecoptocl Unicode version

Theorem 2ecoptocl 6194
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
2ecoptocl.1  |-  S  =  ( ( C  X.  D ) /. R
)
2ecoptocl.2  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ph  <->  ps )
)
2ecoptocl.3  |-  ( [
<. z ,  w >. ] R  =  B  -> 
( ps  <->  ch )
)
2ecoptocl.4  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( z  e.  C  /\  w  e.  D ) )  ->  ph )
Assertion
Ref Expression
2ecoptocl  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ch )
Distinct variable groups:    x, y, z, w, A    z, B, w    x, C, y, z, w    x, D, y, z, w    z, S, w    x, R, y, z, w    ps, x, y    ch, z, w
Allowed substitution hints:    ph( x, y, z, w)    ps( z, w)    ch( x, y)    B( x, y)    S( x, y)

Proof of Theorem 2ecoptocl
StepHypRef Expression
1 2ecoptocl.1 . . 3  |-  S  =  ( ( C  X.  D ) /. R
)
2 2ecoptocl.3 . . . 4  |-  ( [
<. z ,  w >. ] R  =  B  -> 
( ps  <->  ch )
)
32imbi2d 219 . . 3  |-  ( [
<. z ,  w >. ] R  =  B  -> 
( ( A  e.  S  ->  ps )  <->  ( A  e.  S  ->  ch ) ) )
4 2ecoptocl.2 . . . . . 6  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ph  <->  ps )
)
54imbi2d 219 . . . . 5  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ( ( z  e.  C  /\  w  e.  D )  ->  ph )  <->  ( ( z  e.  C  /\  w  e.  D
)  ->  ps )
) )
6 2ecoptocl.4 . . . . . 6  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( z  e.  C  /\  w  e.  D ) )  ->  ph )
76ex 108 . . . . 5  |-  ( ( x  e.  C  /\  y  e.  D )  ->  ( ( z  e.  C  /\  w  e.  D )  ->  ph )
)
81, 5, 7ecoptocl 6193 . . . 4  |-  ( A  e.  S  ->  (
( z  e.  C  /\  w  e.  D
)  ->  ps )
)
98com12 27 . . 3  |-  ( ( z  e.  C  /\  w  e.  D )  ->  ( A  e.  S  ->  ps ) )
101, 3, 9ecoptocl 6193 . 2  |-  ( B  e.  S  ->  ( A  e.  S  ->  ch ) )
1110impcom 116 1  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   <.cop 3378    X. cxp 4343   [cec 6104   /.cqs 6105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-ec 6108  df-qs 6112
This theorem is referenced by:  3ecoptocl  6195  ecovcom  6213  ecovicom  6214  addclnq  6473  mulclnq  6474  nqtri3or  6494  ltexnqq  6506  addclnq0  6549  mulclnq0  6550  distrnq0  6557  mulcomnq0  6558  addassnq0  6560  addclsr  6838  mulclsr  6839  mulgt0sr  6862  aptisr  6863
  Copyright terms: Public domain W3C validator