Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.32dc Unicode version

Theorem 19.32dc 1569
 Description: Theorem 19.32 of [Margaris] p. 90, where is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.)
Hypothesis
Ref Expression
19.32dc.1
Assertion
Ref Expression
19.32dc DECID

Proof of Theorem 19.32dc
StepHypRef Expression
1 19.32dc.1 . . . . 5
21nfn 1548 . . . 4
3219.21 1475 . . 3
43a1i 9 . 2 DECID
51nfdc 1549 . . 3 DECID
6 dfordc 791 . . 3 DECID
75, 6albid 1506 . 2 DECID
8 dfordc 791 . 2 DECID
94, 7, 83bitr4d 209 1 DECID
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 98   wo 629  DECID wdc 742  wal 1241  wnf 1349 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-gen 1338  ax-ie2 1383  ax-4 1400  ax-ial 1427  ax-i5r 1428 This theorem depends on definitions:  df-bi 110  df-dc 743  df-tru 1246  df-fal 1249  df-nf 1350 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator