ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.21h Structured version   Unicode version

Theorem 19.21h 1446
Description: Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as " is not free in ." New proofs should use 19.21 1472 instead. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
Hypothesis
Ref Expression
19.21h.1
Assertion
Ref Expression
19.21h

Proof of Theorem 19.21h
StepHypRef Expression
1 19.21h.1 . . 3
2 alim 1343 . . 3
31, 2syl5 28 . 2
4 hba1 1430 . . . 4
51, 4hbim 1434 . . 3
6 ax-4 1397 . . . 4
76imim2i 12 . . 3
85, 7alrimih 1355 . 2
93, 8impbii 117 1
Colors of variables: wff set class
Syntax hints:   wi 4   wb 98  wal 1240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-4 1397  ax-ial 1424  ax-i5r 1425
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  hbim1  1459  nf3  1556  19.21v  1750
  Copyright terms: Public domain W3C validator