![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0ss | Unicode version |
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
0ss |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3222 |
. . 3
![]() ![]() ![]() ![]() ![]() | |
2 | 1 | pm2.21i 574 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | ssriv 2943 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-v 2553 df-dif 2914 df-in 2918 df-ss 2925 df-nul 3219 |
This theorem is referenced by: ss0b 3250 0pss 3259 npss0 3260 ssdifeq0 3299 sssnr 3515 ssprr 3518 uni0 3598 int0el 3636 0disj 3752 disjx0 3754 tr0 3856 0elpw 3908 elnn 4271 rel0 4405 0ima 4628 fun0 4900 f0 5023 oaword1 5989 bdeq0 9322 bj-omtrans 9416 |
Copyright terms: Public domain | W3C validator |