ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0iin Unicode version

Theorem 0iin 3715
Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
0iin  |-  |^|_ x  e.  (/)  A  =  _V

Proof of Theorem 0iin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-iin 3660 . 2  |-  |^|_ x  e.  (/)  A  =  {
y  |  A. x  e.  (/)  y  e.  A }
2 vex 2560 . . . 4  |-  y  e. 
_V
3 ral0 3322 . . . 4  |-  A. x  e.  (/)  y  e.  A
42, 32th 163 . . 3  |-  ( y  e.  _V  <->  A. x  e.  (/)  y  e.  A
)
54abbi2i 2152 . 2  |-  _V  =  { y  |  A. x  e.  (/)  y  e.  A }
61, 5eqtr4i 2063 1  |-  |^|_ x  e.  (/)  A  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1243    e. wcel 1393   {cab 2026   A.wral 2306   _Vcvv 2557   (/)c0 3224   |^|_ciin 3658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-dif 2920  df-nul 3225  df-iin 3660
This theorem is referenced by:  riin0  3728  iin0r  3922
  Copyright terms: Public domain W3C validator