HomeHome Higher-Order Logic Explorer
Theorem List (p. 2 of 3)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  HOLE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for Higher-Order Logic Explorer - 101-200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremhbov 101 Hypothesis builder for binary operation.
F:(β → (γδ))    &   A:β    &   B:α    &   C:γ    &   R⊧[(λx:α FB) = F]    &   R⊧[(λx:α AB) = A]    &   R⊧[(λx:α CB) = C]       R⊧[(λx:α [AFC]B) = [AFC]]
 
Theoremhbl 102* Hypothesis builder for lambda abstraction.
A:γ    &   B:α    &   R⊧[(λx:α AB) = A]       R⊧[(λx:α λy:β AB) = λy:β A]
 
Axiomax-inst 103* Instantiate a theorem with a new term. The second and third hypotheses are the HOL equivalent of set.mm "effectively not free in" predicate (see set.mm's ax-17, or ax17 205).
RA    &   ⊤⊧[(λx:α By:α) = B]    &   ⊤⊧[(λx:α Sy:α) = S]    &   [x:α = C]⊧[A = B]    &   [x:α = C]⊧[R = S]       SB
 
Theoreminsti 104* Instantiate a theorem with a new term.
C:α    &   B:∗    &   RA    &   ⊤⊧[(λx:α By:α) = B]    &   [x:α = C]⊧[A = B]       RB
 
Theoremclf 105* Evaluate a lambda expression.
A:β    &   C:α    &   [x:α = C]⊧[A = B]    &   ⊤⊧[(λx:α By:α) = B]    &   ⊤⊧[(λx:α Cy:α) = C]       ⊤⊧[(λx:α AC) = B]
 
Theoremcl 106* Evaluate a lambda expression.
A:β    &   C:α    &   [x:α = C]⊧[A = B]       ⊤⊧[(λx:α AC) = B]
 
Theoremovl 107* Evaluate a lambda expression in a binary operation.
A:γ    &   S:α    &   T:β    &   [x:α = S]⊧[A = B]    &   [y:β = T]⊧[B = C]       ⊤⊧[[Sλx:α λy:β AT] = C]
 
0.2  Add propositional calculus definitions
 
Syntaxtfal 108 Contradiction term.
term
 
Syntaxtan 109 Conjunction term.
term
 
Syntaxtne 110 Negation term.
term ¬
 
Syntaxtim 111 Implication term.
term
 
Syntaxtal 112 For all term.
term
 
Syntaxtex 113 There exists term.
term
 
Syntaxtor 114 Disjunction term.
term
 
Syntaxteu 115 There exists unique term.
term ∃!
 
Definitiondf-al 116* Define the for all operator.
⊤⊧[ = λp:(α → ∗) [p:(α → ∗) = λx:α ⊤]]
 
Definitiondf-fal 117 Define the constant false.
⊤⊧[⊥ = (λp:∗ p:∗)]
 
Definitiondf-an 118* Define the 'and' operator.
⊤⊧[ = λp:∗ λq:∗ [λf:(∗ → (∗ → ∗)) [p:∗f:(∗ → (∗ → ∗))q:∗] = λf:(∗ → (∗ → ∗)) [⊤f:(∗ → (∗ → ∗))⊤]]]
 
Definitiondf-im 119* Define the implication operator.
⊤⊧[ ⇒ = λp:∗ λq:∗ [[p:∗ q:∗] = p:∗]]
 
Definitiondf-not 120 Define the negation operator.
⊤⊧[¬ = λp:∗ [p:∗ ⇒ ⊥]]
 
Definitiondf-ex 121* Define the existence operator.
⊤⊧[ = λp:(α → ∗) (λq:∗ [(λx:α [(p:(α → ∗)x:α) ⇒ q:∗]) ⇒ q:∗])]
 
Definitiondf-or 122* Define the 'or' operator.
⊤⊧[ = λp:∗ λq:∗ (λx:∗ [[p:∗ ⇒ x:∗] ⇒ [[q:∗ ⇒ x:∗] ⇒ x:∗]])]
 
Definitiondf-eu 123* Define the 'exists unique' operator.
⊤⊧[∃! = λp:(α → ∗) (λy:α (λx:α [(p:(α → ∗)x:α) = [x:α = y:α]]))]
 
Theoremwal 124 For all type.
:((α → ∗) → ∗)
 
Theoremwfal 125 Contradiction type.
⊥:∗
 
Theoremwan 126 Conjunction type.
:(∗ → (∗ → ∗))
 
Theoremwim 127 Implication type.
⇒ :(∗ → (∗ → ∗))
 
Theoremwnot 128 Negation type.
¬ :(∗ → ∗)
 
Theoremwex 129 There exists type.
:((α → ∗) → ∗)
 
Theoremwor 130 Disjunction type.
:(∗ → (∗ → ∗))
 
Theoremweu 131 There exists unique type.
∃!:((α → ∗) → ∗)
 
Theoremalval 132* Value of the for all predicate.
F:(α → ∗)       ⊤⊧[(F) = [F = λx:α ⊤]]
 
Theoremexval 133* Value of the 'there exists' predicate.
F:(α → ∗)       ⊤⊧[(F) = (λq:∗ [(λx:α [(Fx:α) ⇒ q:∗]) ⇒ q:∗])]
 
Theoremeuval 134* Value of the 'exists unique' predicate.
F:(α → ∗)       ⊤⊧[(∃!F) = (λy:α (λx:α [(Fx:α) = [x:α = y:α]]))]
 
Theoremnotval 135 Value of negation.
A:∗       ⊤⊧[(¬ A) = [A ⇒ ⊥]]
 
Theoremimval 136 Value of the implication.
A:∗    &   B:∗       ⊤⊧[[AB] = [[A B] = A]]
 
Theoremorval 137* Value of the disjunction.
A:∗    &   B:∗       ⊤⊧[[A B] = (λx:∗ [[Ax:∗] ⇒ [[Bx:∗] ⇒ x:∗]])]
 
Theoremanval 138* Value of the conjunction.
A:∗    &   B:∗       ⊤⊧[[A B] = [λf:(∗ → (∗ → ∗)) [Af:(∗ → (∗ → ∗))B] = λf:(∗ → (∗ → ∗)) [⊤f:(∗ → (∗ → ∗))⊤]]]
 
Theoremax4g 139 If F is true for all x:α, then it is true for A.
F:(α → ∗)    &   A:α       (F)⊧(FA)
 
Theoremax4 140 If A is true for all x:α, then it is true for A.
A:∗       (λx:α A)⊧A
 
Theoremalrimiv 141* If one can prove RA where R does not contain x, then A is true for all x.
RA       R⊧(λx:α A)
 
Theoremcla4v 142* If A(x) is true for all x:α, then it is true for C = A(B).
A:∗    &   B:α    &   [x:α = B]⊧[A = C]       (λx:α A)⊧C
 
Theorempm2.21 143 A falsehood implies anything.
A:∗       ⊥⊧A
 
Theoremdfan2 144 An alternative defintion of the "and" term in terms of the context conjunction.
A:∗    &   B:∗       ⊤⊧[[A B] = (A, B)]
 
Theoremhbct 145 Hypothesis builder for context conjunction.
A:∗    &   B:α    &   C:∗    &   R⊧[(λx:α AB) = A]    &   R⊧[(λx:α CB) = C]       R⊧[(λx:α (A, C)B) = (A, C)]
 
Theoremmpd 146 Modus ponens.
T:∗    &   RS    &   R⊧[ST]       RT
 
Theoremimp 147 Importation deduction.
S:∗    &   T:∗    &   R⊧[ST]       (R, S)⊧T
 
Theoremex 148 Exportation deduction.
(R, S)⊧T       R⊧[ST]
 
Theoremnotval2 149 Another way two write ¬ A, the negation of A.
A:∗       ⊤⊧[(¬ A) = [A = ⊥]]
 
Theoremnotnot1 150 One side of notnot 187.
A:∗       A⊧(¬ (¬ A))
 
Theoremcon2d 151 A contraposition deduction.
T:∗    &   (R, S)⊧(¬ T)       (R, T)⊧(¬ S)
 
Theoremcon3d 152 A contraposition deduction.
(R, S)⊧T       (R, (¬ T))⊧(¬ S)
 
Theoremecase 153 Elimination by cases.
A:∗    &   B:∗    &   T:∗    &   R⊧[A B]    &   (R, A)⊧T    &   (R, B)⊧T       RT
 
Theoremolc 154 Or introduction.
A:∗    &   B:∗       B⊧[A B]
 
Theoremorc 155 Or introduction.
A:∗    &   B:∗       A⊧[A B]
 
Theoremexlimdv2 156* Existential elimination.
F:(α → ∗)    &   (R, (Fx:α))⊧T       (R, (F))⊧T
 
Theoremexlimdv 157* Existential elimination.
(R, A)⊧T       (R, (λx:α A))⊧T
 
Theoremax4e 158 Existential introduction.
F:(α → ∗)    &   A:α       (FA)⊧(F)
 
Theoremcla4ev 159* Existential introduction.
A:∗    &   B:α    &   [x:α = B]⊧[A = C]       C⊧(λx:α A)
 
Theorem19.8a 160 Existential introduction.
A:∗       A⊧(λx:α A)
 
0.3  Type definition mechanism
 
SyntaxwffMMJ2d 161 Internal axiom for mmj2 use.
wff typedef α(A, B)C
 
Syntaxwabs 162 Type of the abstraction function.
B:α    &   F:(α → ∗)    &   ⊤⊧(FB)    &   typedef β(A, R)F       A:(αβ)
 
Syntaxwrep 163 Type of the representation function.
B:α    &   F:(α → ∗)    &   ⊤⊧(FB)    &   typedef β(A, R)F       R:(βα)
 
Axiomax-tdef 164* The type definition axiom. The last hypothesis corresponds to the actual definition one wants to make; here we are defining a new type β and the definition will provide us with pair of bijections A, R mapping the new type β to the subset of the old type α such that Fx is true. In order for this to be a valid (conservative) extension, we must ensure that the new type is non-empty, and for that purpose we need a witness B that F is not always false.
B:α    &   F:(α → ∗)    &   ⊤⊧(FB)    &   typedef β(A, R)F       ⊤⊧((λx:β [(A(Rx:β)) = x:β]), (λx:α [(Fx:α) = [(R(Ax:α)) = x:α]]))
 
0.4  Extensionality
 
Axiomax-eta 165* The eta-axiom: a function is determined by its values.
⊤⊧(λf:(αβ) [λx:α (f:(αβ)x:α) = f:(αβ)])
 
Theoremeta 166* The eta-axiom: a function is determined by its values.
F:(αβ)       ⊤⊧[λx:α (Fx:α) = F]
 
Theoremcbvf 167* Change bound variables in a lambda abstraction.
A:β    &   ⊤⊧[(λy:α Az:α) = A]    &   ⊤⊧[(λx:α Bz:α) = B]    &   [x:α = y:α]⊧[A = B]       ⊤⊧[λx:α A = λy:α B]
 
Theoremcbv 168* Change bound variables in a lambda abstraction.
A:β    &   [x:α = y:α]⊧[A = B]       ⊤⊧[λx:α A = λy:α B]
 
Theoremleqf 169* Equality theorem for lambda abstraction, using bound variable instead of distinct variables.
A:β    &   R⊧[A = B]    &   ⊤⊧[(λx:α Ry:α) = R]       R⊧[λx:α A = λx:α B]
 
Theoremalrimi 170* If one can prove RA where R does not contain x, then A is true for all x.
RA    &   ⊤⊧[(λx:α Ry:α) = R]       R⊧(λx:α A)
 
Theoremexlimd 171* Existential elimination.
(R, A)⊧T    &   ⊤⊧[(λx:α Ry:α) = R]    &   ⊤⊧[(λx:α Ty:α) = T]       (R, (λx:α A))⊧T
 
Theoremalimdv 172* Deduction from Theorem 19.20 of [Margaris] p. 90.
(R, A)⊧B       (R, (λx:α A))⊧(λx:α B)
 
Theoremeximdv 173* Deduction from Theorem 19.22 of [Margaris] p. 90.
(R, A)⊧B       (R, (λx:α A))⊧(λx:α B)
 
Theoremalnex 174* Theorem 19.7 of [Margaris] p. 89.
A:∗       ⊤⊧[(λx:αA)) = (¬ (λx:α A))]
 
Theoremexnal1 175* Forward direction of exnal 188.
A:∗       (λx:αA))⊧(¬ (λx:α A))
 
Theoremisfree 176* Derive the metamath "is free" predicate in terms of the HOL "is free" predicate.
A:∗    &   ⊤⊧[(λx:α Ay:α) = A]       ⊤⊧[A ⇒ (λx:α A)]
 
0.5  Axioms of infinity and choice
 
Syntaxtf11 177 One-to-one function.
term 1-1
 
Syntaxtfo 178 Onto function.
term onto
 
Syntaxtat 179 Indefinite descriptor.
term ε
 
Syntaxwat 180 The type of the indefinite descriptor.
ε:((α → ∗) → α)
 
Definitiondf-f11 181* Define a one-to-one function.
⊤⊧[1-1 = λf:(αβ) (λx:α (λy:α [[(f:(αβ)x:α) = (f:(αβ)y:α)] ⇒ [x:α = y:α]]))]
 
Definitiondf-fo 182* Define an onto function.
⊤⊧[onto = λf:(αβ) (λy:β (λx:α [y:β = (f:(αβ)x:α)]))]
 
Axiomax-ac 183* Defining property of the indefinite descriptor: it selects an element from any type. This is equivalent to global choice in ZF.
⊤⊧(λp:(α → ∗) (λx:α [(p:(α → ∗)x:α) ⇒ (p:(α → ∗)(εp:(α → ∗)))]))
 
Theoremac 184 Defining property of the indefinite descriptor: it selects an element from any type. This is equivalent to global choice in ZF.
F:(α → ∗)    &   A:α       (FA)⊧(FF))
 
Theoremdfex2 185 Alternative definition of the "there exists" quantifier.
F:(α → ∗)       ⊤⊧[(F) = (FF))]
 
Theoremexmid 186 Diaconescu's theorem, which derives the law of the excluded middle from the axiom of choice.
A:∗       ⊤⊧[A A)]
 
Theoremnotnot 187 Rule of double negation.
A:∗       ⊤⊧[A = (¬ (¬ A))]
 
Theoremexnal 188* Theorem 19.14 of [Margaris] p. 90.
A:∗       ⊤⊧[(λx:αA)) = (¬ (λx:α A))]
 
Axiomax-inf 189 The axiom of infinity: the set of "individuals" is not Dedekind-finite. Using the axiom of choice, we can show that this is equivalent to an embedding of the natural numbers in ι.
⊤⊧(λf:(ιι) [(1-1 f:(ιι)) (¬ (onto f:(ιι)))])
 
0.6  Rederive the Metamath axioms
 
Theoremax1 190 Axiom Simp. Axiom A1 of [Margaris] p. 49.
R:∗    &   S:∗       ⊤⊧[R ⇒ [SR]]
 
Theoremax2 191 Axiom Frege. Axiom A2 of [Margaris] p. 49.
R:∗    &   S:∗    &   T:∗       ⊤⊧[[R ⇒ [ST]] ⇒ [[RS] ⇒ [RT]]]
 
Theoremax3 192 Axiom Transp. Axiom A3 of [Margaris] p. 49.
R:∗    &   S:∗       ⊤⊧[[(¬ R) ⇒ (¬ S)] ⇒ [SR]]
 
Theoremaxmp 193 Rule of Modus Ponens. The postulated inference rule of propositional calculus. See e.g. Rule 1 of [Hamilton] p. 73.
S:∗    &   ⊤⊧R    &   ⊤⊧[RS]       ⊤⊧S
 
Theoremax5 194* Axiom of Quantified Implication. Axiom C4 of [Monk2] p. 105.
R:∗    &   S:∗       ⊤⊧[(λx:α [RS]) ⇒ [(λx:α R) ⇒ (λx:α S)]]
 
Theoremax6 195* Axiom of Quantified Negation. Axiom C5-2 of [Monk2] p. 113.
R:∗       ⊤⊧[(¬ (λx:α R)) ⇒ (λx:α (¬ (λx:α R)))]
 
Theoremax7 196* Axiom of Quantifier Commutation. Axiom scheme C6' in [Megill] p. 448 (p. 16 of the preprint).
R:∗       ⊤⊧[(λx:α (λy:α R)) ⇒ (λy:α (λx:α R))]
 
Theoremaxgen 197* Rule of Generalization. See e.g. Rule 2 of [Hamilton] p. 74.
⊤⊧R       ⊤⊧(λx:α R)
 
Theoremax8 198 Axiom of Equality. Axiom scheme C8' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Axiom C7 of [Monk2] p. 105.
A:α    &   B:α    &   C:α       ⊤⊧[[A = B] ⇒ [[A = C] ⇒ [B = C]]]
 
Theoremax9 199* Axiom of Equality. Axiom scheme C8' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Axiom C7 of [Monk2] p. 105.
A:α       ⊤⊧(¬ (λx:α (¬ [x:α = A])))
 
Theoremax10 200* Axiom of Quantifier Substitution. Appears as Lemma L12 in [Megill] p. 445 (p. 12 of the preprint).
⊤⊧[(λx:α [x:α = y:α]) ⇒ (λy:α [y:α = x:α])]
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100101-200 3 201-209
  Copyright terms: Public domain < Previous  Next >