HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  trud Unicode version

Theorem trud 27
Description: Deduction form of tru 41.
Hypothesis
Ref Expression
ax-trud.1 |- R:*
Assertion
Ref Expression
trud |- R |= T.

Proof of Theorem trud
StepHypRef Expression
1 ax-trud.1 . 2 |- R:*
21ax-trud 26 1 |- R |= T.
Colors of variables: type var term
Syntax hints:  *hb 3  T.kt 8   |= wffMMJ2 11  wffMMJ2t 12
This theorem is referenced by:  trul  37  hbov  101  ax4g  139  dfan2  144  hbct  145  axun  209
This theorem was proved from axioms:  ax-trud 26
  Copyright terms: Public domain W3C validator