![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpmapen | Structured version Visualization version GIF version |
Description: Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
xpmapen.1 | ⊢ 𝐴 ∈ V |
xpmapen.2 | ⊢ 𝐵 ∈ V |
xpmapen.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
xpmapen | ⊢ ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpmapen.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | xpmapen.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | xpmapen.3 | . 2 ⊢ 𝐶 ∈ V | |
4 | fveq2 6103 | . . . 4 ⊢ (𝑤 = 𝑧 → (𝑥‘𝑤) = (𝑥‘𝑧)) | |
5 | 4 | fveq2d 6107 | . . 3 ⊢ (𝑤 = 𝑧 → (1st ‘(𝑥‘𝑤)) = (1st ‘(𝑥‘𝑧))) |
6 | 5 | cbvmptv 4678 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑤))) = (𝑧 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑧))) |
7 | 4 | fveq2d 6107 | . . 3 ⊢ (𝑤 = 𝑧 → (2nd ‘(𝑥‘𝑤)) = (2nd ‘(𝑥‘𝑧))) |
8 | 7 | cbvmptv 4678 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑤))) = (𝑧 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑧))) |
9 | fveq2 6103 | . . . 4 ⊢ (𝑤 = 𝑧 → ((1st ‘𝑦)‘𝑤) = ((1st ‘𝑦)‘𝑧)) | |
10 | fveq2 6103 | . . . 4 ⊢ (𝑤 = 𝑧 → ((2nd ‘𝑦)‘𝑤) = ((2nd ‘𝑦)‘𝑧)) | |
11 | 9, 10 | opeq12d 4348 | . . 3 ⊢ (𝑤 = 𝑧 → 〈((1st ‘𝑦)‘𝑤), ((2nd ‘𝑦)‘𝑤)〉 = 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) |
12 | 11 | cbvmptv 4678 | . 2 ⊢ (𝑤 ∈ 𝐶 ↦ 〈((1st ‘𝑦)‘𝑤), ((2nd ‘𝑦)‘𝑤)〉) = (𝑧 ∈ 𝐶 ↦ 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) |
13 | 1, 2, 3, 6, 8, 12 | xpmapenlem 8012 | 1 ⊢ ((𝐴 × 𝐵) ↑𝑚 𝐶) ≈ ((𝐴 ↑𝑚 𝐶) × (𝐵 ↑𝑚 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1977 Vcvv 3173 〈cop 4131 class class class wbr 4583 ↦ cmpt 4643 × cxp 5036 ‘cfv 5804 (class class class)co 6549 1st c1st 7057 2nd c2nd 7058 ↑𝑚 cmap 7744 ≈ cen 7838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-map 7746 df-en 7842 |
This theorem is referenced by: rexpen 14796 |
Copyright terms: Public domain | W3C validator |